Accounting for uncertainty in Data quality is important for accurate statistical inference. We aim to an optimal conservative allocation for a large universe of assets in mean-variance portfolio (MVP), which is the worst choice within uncertainty in data distribution. Unlike the low dimensional MVP studied in Blanchet et al. (2022, Management Science), the large number of assets raises a challenging problem in quantifying the uncertainty, due to the big deviation of the sample covariance matrix from the population version. To overcome this difficulty, we propose a data-adaptive method to quantify the uncertainty with the help of a factor structure. Monte-Carlo Simulation is conducted to show the superiority of our method in high-dimensional cases, that, avoiding the over-conservative results in Blanchet et al. (2022), our allocation is closer to the oracle version in terms of risk minimization and expected portfolio return controlling.
翻译:暂无翻译