Support constrained generator matrix for a linear code has been an active topic in recent years. The necessary and sufficient condition for the existence of MDS codes over small fields with support constrained generator matrices were conjectured by Dau, Song, Yuen in 2014. This GM-MDS conjecture was proved independently by Lovett and Yildiz-Hassibi in 2018. In this paper we propose the necessary and sufficient conditions for support constrained generator matrices of general linear codes based on the generalized Hamming weights. It is proved that the direct generalization of the GM-MDS conjecture for $2$-MDS codes and algebraic geometry codes is not true over arbitrary fields. We propose and prove a GHW-based sufficient condition for support constrained matrices of general linear codes. This is the first sufficient condition for the existence of support constrained generator matrices for general linear codes over arbitrary finite fields. Moreover a weaker GHW-based sufficient condition for support constrained generator matrices are given for the binary simplex code and the first order $q$-ary Reed-Muller codes.
翻译:近些年来,线性代码的支持受限生成器矩阵一直是一个活跃的话题,2014年,Dau、Song、Yuen预测了在支持受限生成器矩阵的小字段上存在MDS代码的必要和充分条件,2014年,Dau、Song、Yuen预测了这一GMMDS的假设,2018年,Lovett和Yildiz-Hassibi独立地证明了这一GMMDS的假设。在本文件中,我们提议了支持基于普遍含荷重量的一般线性代码的受限生成器矩阵的必要和充分条件。事实证明,对$$MDS和代数的GMM-MDS预测,在任意的字段上并不完全适用。我们提议并证明基于GHW的基于支持受限的一般线性代码矩阵的充足条件。此外,对于二进制简单代码和第一个订单$q$Reed-Muller代码,基于GHW的支持受限生成器矩阵的充足条件较弱。