In this paper we apply methods originated in Complexity theory to some problems of Approximation. We notice that the construction of Alman and Williams that disproves the rigidity of Walsh-Hadamard matrices, provides good $\ell_p$-approximation for $p<2$. It follows that the first $n$ functions of Walsh system can be approximated with an error $n^{-\delta}$ by a linear space of dimension $n^{1-\delta}$: $$ d_{n^{1-\delta}}(\{w_1,\ldots,w_n\}, L_p[0,1]) \le n^{-\delta},\quad p\in[1,2),\;\delta=\delta(p)>0. $$ We do not know if this is possible for the trigonometric system. We show that the algebraic method of Alon--Frankl--R\"odl for bounding the number of low-signum-rank matrices, works for tensors: almost all signum-tensors have large signum-rank and can't be $\ell_1$-approximated by low-rank tensors. This implies lower bounds for $\Theta_m$~ -- the error of $m$-term approximation of multivariate functions by sums of tensor products $u^1(x_1)\cdots u^d(x_d)$. In particular, for the set of trigonometric polynomials with spectrum in $\prod_{j=1}^d[-n_j,n_j]$ and of norm $\|t\|_\infty\le 1$ we have $$ \Theta_m(\mathcal T(n_1,\ldots,n_d)_\infty,L_1[-\pi,\pi]^d) \ge c_1(d)>0,\quad m\le c_2(d)\frac{\prod n_j}{\max\{n_j\}}. $$ Sharp bounds follow for classes of dominated mixed smoothness: $$ \Theta_m(W^{(r,r,\ldots,r)}_p,L_q[0,1]^d)\asymp m^{-\frac{rd}{d-1}},\quad\mbox 2\le p\le\infty,\; 1\le q\le 2. $$


翻译:在本文中, 我们应用了来自复杂度理论的方法 。 我们注意到, Alman 和 William 的构建使 Walsh- Hadamard 基质的僵硬性失色, 为 $p < 2 提供了好的 ell_ p$- adx $。 因此, Walsh 系统的第一个 $ 的功能可以用 $\\\\\ delta} 的线性空间 $@% 1- delta} 美元 : $ d\\ 1- dal_ dal- delta} 美元 美元 : $\\ d\\ 美元, d\\\ 美元 美元 美元 美元 。 我们显示, Alon- Frankl- R\\\\ 美元 的平方位法 法 : 将低端的基质的基质的基质的数、 数组的数组 几乎全部签署

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
TensorFlow 2.0新特性之Ragged Tensor
深度学习每日摘要
18+阅读 · 2019年4月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
TensorFlow 2.0新特性之Ragged Tensor
深度学习每日摘要
18+阅读 · 2019年4月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员