In this paper we apply methods originated in Complexity theory to some problems of Approximation. We notice that the construction of Alman and Williams that disproves the rigidity of Walsh-Hadamard matrices, provides good $\ell_p$-approximation for $p<2$. It follows that the first $n$ functions of Walsh system can be approximated with an error $n^{-\delta}$ by a linear space of dimension $n^{1-\delta}$: $$ d_{n^{1-\delta}}(\{w_1,\ldots,w_n\}, L_p[0,1]) \le n^{-\delta},\quad p\in[1,2),\;\delta=\delta(p)>0. $$ We do not know if this is possible for the trigonometric system. We show that the algebraic method of Alon--Frankl--R\"odl for bounding the number of low-signum-rank matrices, works for tensors: almost all signum-tensors have large signum-rank and can't be $\ell_1$-approximated by low-rank tensors. This implies lower bounds for $\Theta_m$~ -- the error of $m$-term approximation of multivariate functions by sums of tensor products $u^1(x_1)\cdots u^d(x_d)$. In particular, for the set of trigonometric polynomials with spectrum in $\prod_{j=1}^d[-n_j,n_j]$ and of norm $\|t\|_\infty\le 1$ we have $$ \Theta_m(\mathcal T(n_1,\ldots,n_d)_\infty,L_1[-\pi,\pi]^d) \ge c_1(d)>0,\quad m\le c_2(d)\frac{\prod n_j}{\max\{n_j\}}. $$ Sharp bounds follow for classes of dominated mixed smoothness: $$ \Theta_m(W^{(r,r,\ldots,r)}_p,L_q[0,1]^d)\asymp m^{-\frac{rd}{d-1}},\quad\mbox 2\le p\le\infty,\; 1\le q\le 2. $$
翻译:在本文中, 我们应用了来自复杂度理论的方法 。 我们注意到, Alman 和 William 的构建使 Walsh- Hadamard 基质的僵硬性失色, 为 $p < 2 提供了好的 ell_ p$- adx $。 因此, Walsh 系统的第一个 $ 的功能可以用 $\\\\\ delta} 的线性空间 $@% 1- delta} 美元 : $ d\\ 1- dal_ dal- delta} 美元 美元 : $\\ d\\ 美元, d\\\ 美元 美元 美元 美元 。 我们显示, Alon- Frankl- R\\\\ 美元 的平方位法 法 : 将低端的基质的基质的基质的数、 数组的数组 几乎全部签署