Binary memristive crossbars have gained huge attention as an energy-efficient deep learning hardware accelerator. Nonetheless, they suffer from various noises due to the analog nature of the crossbars. To overcome such limitations, most previous works train weight parameters with noise data obtained from a crossbar. These methods are, however, ineffective because it is difficult to collect noise data in large-volume manufacturing environment where each crossbar has a large device/circuit level variation. Moreover, we argue that there is still room for improvement even though these methods somewhat improve accuracy. This paper explores a new perspective on mitigating crossbar noise in a more generalized way by manipulating input binary bit encoding rather than training the weight of networks with respect to noise data. We first mathematically show that the noise decreases as the number of binary bit encoding pulses increases when representing the same amount of information. In addition, we propose Gradient-based Bit Encoding Optimization (GBO) which optimizes a different number of pulses at each layer, based on our in-depth analysis that each layer has a different level of noise sensitivity. The proposed heterogeneous layer-wise bit encoding scheme achieves high noise robustness with low computational cost. Our experimental results on public benchmark datasets show that GBO improves the classification accuracy by ~5-40% in severe noise scenarios.


翻译:作为节能深深学习硬件加速器,中间介质横截面已获得极大关注。 然而,它们由于交叉截面的模拟性质而受到各种噪音的影响。 为了克服这些局限性,大多数先前的工作都用交叉截面获得的噪音数据来训练重量参数。 然而,这些方法之所以无效,是因为在大型制造环境中难以收集噪音数据,因为每个交叉截面都具有巨大的设备/电路水平差异。此外,我们争辩说,尽管这些方法在一定程度上提高了准确性,但仍有改进的余地。本文探讨了如何通过调控输入的双位编码而不是培训网络在噪音数据方面的权重来更普遍地减少跨巴噪音的新视角。我们首先用数学显示,噪音随着二位点编码脉冲数量在代表相同信息量时增加而减少。此外,我们建议采用基于梯基的Bit Encoting Oppimation(GBOBO) 优化每一层的不同脉冲数量,基于我们的深入分析,即每个层具有不同程度的成本严重敏感度,而不是根据不同程度的噪音敏感度,根据我们提议的不同程度的BEBBBBBB的精确度计算方法,从而实现高水平的精确度的精确度的精确度数据计算方法。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
110+阅读 · 2020年3月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月18日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员