In this work we provide provable regret guarantees for an online meta-learning control algorithm in an iterative control setting, where in each iteration the system to be controlled is a linear deterministic system that is different and unknown, the cost for the controller in an iteration is a general additive cost function and the control input is required to be constrained, which if violated incurs an additional cost. We prove (i) that the algorithm achieves a regret for the controller cost and constraint violation that are $O(T^{3/4})$ for an episode of duration $T$ with respect to the best policy that satisfies the control input control constraints and (ii) that the average of the regret for the controller cost and constraint violation with respect to the same policy vary as $O((1+\log(N)/N)T^{3/4})$ with the number of iterations $N$, showing that the worst regret for the learning within an iteration continuously improves with experience of more iterations.
翻译:在这项工作中,我们为在迭代控制环境中的在线元学习控制算法提供了可证实的遗憾保证,在迭代控制环境中,所要控制的系统是一个不同和未知的线性确定系统,迭代控制器的费用是一个一般的添加成本函数,控制输入必须受到限制,如果被违反,则需要增加费用。我们证明:(一) 该算法对于在一段时期内违反控制器费用和制约成本($O)(T ⁇ 3/4}美元)的情况,在满足控制输入控制限制限制的最佳政策方面,实现了可证实的遗憾,以及(二) 控制器费用的平均遗憾和违反同一政策的制约程度与($(1 ⁇ (N)/N)T ⁇ 3/4}美元的数字不同,这表明,由于发生更多的迭代经验,在一段时期内学习最糟糕的遗憾不断改善。