In this paper, we will provide the the finite element method for the electro-osmotic flow in micro-channels, in which a convection-diffusion type equation is given for the charge density $\rho^e$. A time-discrete method based on the backward Euler method is designed. The theoretical analysis shows that the numerical algorithm is unconditionally stable and has optimal convergence rates. To show the effectiveness of the proposed model, some numerical results for the electro-osmotic flow in the T-junction micro-channels and in rough micro-channels are provided. Numerical results indicate that the proposed numerical method is suitable for simulating electro-osmotic flows.


翻译:在本文中,我们将提供微通道电流的限定要素方法,其中为充电密度$\rho ⁇ e$提供对流-扩散式方程式。设计了以后向尤勒法为基础的时间分解方法。理论分析表明,数字算法无条件稳定,并具有最佳汇合率。为了显示拟议模型的有效性,提供了T-互吸微型通道和粗微通道电流的一些数字结果。数字结果显示,拟议的数字方法适合模拟电动流。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员