A recent line of works studied wide deep neural networks (DNNs) by approximating them as Gaussian Processes (GPs). A DNN trained with gradient flow was shown to map to a GP governed by the Neural Tangent Kernel (NTK), whereas earlier works showed that a DNN with an i.i.d. prior over its weights maps to the so-called Neural Network Gaussian Process (NNGP). Here we consider a DNN training protocol, involving noise, weight decay and finite width, whose outcome corresponds to a certain non-Gaussian stochastic process. An analytical framework is then introduced to analyze this non-Gaussian process, whose deviation from a GP is controlled by the finite width. Our contribution is three-fold: (i) In the infinite width limit, we establish a correspondence between DNNs trained with noisy gradients and the NNGP, not the NTK. (ii) We provide a general analytical form for the finite width correction (FWC) for DNNs with arbitrary activation functions and depth and use it to predict the outputs of empirical finite networks with high accuracy. Analyzing the FWC behavior as a function of $n$, the training set size, we find that it is negligible for both the very small $n$ regime, and, surprisingly, for the large $n$ regime (where the GP error scales as $O(1/n)$). (iii) We flesh out algebraically how these FWCs can improve the performance of finite convolutional neural networks (CNNs) relative to their GP counterparts on image classification tasks.


翻译:近期的一行工程通过近似Gausian进程(GPs)来研究广泛而深的神经网络(DNN) 。 一个经过梯度流训练的DNN用梯度流向一个由Neal Tangent Kernel(NTK)管理的GP地图显示,而早先的工程显示,一个带有i.i.d.的DNNN在向所谓的Neural网络(NNNGP)进行权重图之前,先是用I.i.d.d.,然后是给所谓的NEural网络(NNGP)的权重图。 这里我们考虑的是DNNNN培训协议,涉及噪音、重量1/衰减和有限宽度,其结果与某种非GNPs(FWC)的某种非GNP进程相匹配。 然后引入了一个分析框架来分析这个非GNNP进程,而后者的偏差由有限的宽度宽度控制。 我们的贡献是三:在无限宽度的宽度的宽度范围内的网络中,我们可以用它的精度分析表格来预测其精度值的精度值值值, 。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
32+阅读 · 2020年4月15日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
已删除
将门创投
3+阅读 · 2017年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
1+阅读 · 2021年11月23日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
4+阅读 · 2017年1月2日
VIP会员
相关VIP内容
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
32+阅读 · 2020年4月15日
相关资讯
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
已删除
将门创投
3+阅读 · 2017年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员