Maximum diversity aims at selecting a diverse set of high-quality objects from a collection, which is a fundamental problem and has a wide range of applications, e.g., in Web search. Diversity under a uniform or partition matroid constraint naturally describes useful cardinality or budget requirements, and admits simple approximation algorithms. When applied to clustered data, however, popular algorithms such as picking objects iteratively and performing local search lose their approximation guarantees towards maximum intra-cluster diversity because they fail to optimize the objective in a global manner. We propose an algorithm that greedily adds a pair of objects instead of a singleton, and which attains a constant approximation factor over clustered data. We further extend the algorithm to the case of monotone and submodular quality function, and under a partition matroid constraint. We also devise a technique to make our algorithm scalable, and on the way we obtain a modification that gives better solutions in practice while maintaining the approximation guarantee in theory. Our algorithm achieves excellent performance, compared to strong baselines in a mix of synthetic and real-world datasets.
翻译:最大多样性的目的是从一个收集中选择一套多样的高质量物体,这是一个根本性的问题,具有广泛的应用,例如,在网上搜索中。在统一或分割的机器人受限制下的多样性自然地描述了有用的基本条件或预算要求,并接受了简单的近似算法。但是,当应用到组群数据时,诸如迭接和进行局部搜索等流行算法会失去其近似保障,以达到最大程度的集群内多样性,因为它们未能以全球方式优化目标。我们建议一种算法,即贪婪地添加一对对象,而不是单吨,并且能够在集成数据上达到一个恒定近似系数。我们进一步将算法扩大到单质和亚模质功能的情况,并在一个分区式模型受限制的情况下。我们还设计了一种技术,使我们的算法可以伸缩,以及我们如何获得一种在实践上提供更好解决办法的修改,同时保持理论上的近似保证。我们的算法取得优异的性,与合成和真实世界数据集组合中强大的基线相比较。