This paper considers stochastic first-order algorithms for convex-concave minimax problems of the form $\min_{\bf x}\max_{\bf y}f(\bf x, \bf y)$, where $f$ can be presented by the average of $n$ individual components which are $L$-average smooth. For $\mu_x$-strongly-convex-$\mu_y$-strongly-concave setting, we propose a new method which could find a $\varepsilon$-saddle point of the problem in $\tilde{\mathcal O} \big(\sqrt{n(\sqrt{n}+\kappa_x)(\sqrt{n}+\kappa_y)}\log(1/\varepsilon)\big)$ stochastic first-order complexity, where $\kappa_x\triangleq L/\mu_x$ and $\kappa_y\triangleq L/\mu_y$. This upper bound is near optimal with respect to $\varepsilon$, $n$, $\kappa_x$ and $\kappa_y$ simultaneously. In addition, the algorithm is easily implemented and works well in practical. Our methods can be extended to solve more general unbalanced convex-concave minimax problems and the corresponding upper complexity bounds are also near optimal.
翻译:本文思考了 $\\ min ⁇ bf x ⁇ max ⁇ bf y}f(\\ bf x,\ bf y) 美元形式的最先排序算法问题, 美元可以由平均平滑的美元单元表示。 对于 $\ mu_ x$- 强力- convex- mu_ y$- 强力- contracive 设置, 我们建议了一种新的方法, 可以找到 $\ varepsilon$- saddleg 问题在 $\ dlevde_ xmax_ mathcal O}\ big(\\ bfx x x,\\ bfx x,\\\ n( sqrt{n,\ kapa_x_x) 美元平均平滑滑滑。 log( 1/ varepsilon)\ big) stochachic fir 一级复杂, 其中$\ kapa_ trainqleqleqleq_ real_ remaxal_ $nalal_ passalmaxalmax rouple rouple rmax rodudeal $.