Capsule neural network is a new and popular technique in deep learning. However, the traditional capsule neural network does not extract features sufficiently before the dynamic routing between the capsules. In this paper, the one Double Enhanced Capsule Neural Network (E2-Capsnet) that uses AU-aware attention for facial expression recognition (FER) is proposed. The E2-Capsnet takes advantage of dynamic routing between the capsules, and has two enhancement modules which are beneficial for FER. The first enhancement module is the convolutional neural network with AU-aware attention, which can help focus on the active areas of the expression. The second enhancement module is the capsule neural network with multiple convolutional layers, which enhances the ability of the feature representation. Finally, squashing function is used to classify the facial expression. We demonstrate the effectiveness of E2-Capsnet on the two public benchmark datasets, RAF-DB and EmotioNet. The experimental results show that our E2-Capsnet is superior to the state-of-the-art methods. Our implementation will be publicly available online.
翻译:Capsule神经网络是深层学习中的一种新的流行技术。 但是,传统的胶囊神经网络在胶囊之间的动态路径之前并没有充分提取特征。 在本文中, 提出了使用 AU- 觉察表情识别( FER) 的双倍增强胶囊神经网络( E2 Capsnet ) 。 E2 Capsnet 利用胶囊之间的动态路径, 并有两个有益于 FER 的增强模块。 第一个增强模块是 AU - 觉察到的神经神经网络, 它可以帮助关注该表达的活跃领域。 第二个增强模块是具有多个卷积层的胶囊神经网络, 增强特征代表的能力。 最后, 壁化功能用于对面部表示进行分类。 我们展示了E2 Capsnet在两个公共基准数据集( RAF- DB 和 EmotioNet) 上的有效性。 实验结果显示, E2 Capsnet 的功能优于状态方法。 我们的功能将公开在线提供。