Purpose: We propose a general framework for quantifying predictive uncertainties of dose-related quantities and leveraging this information in a dose mimicking problem in the context of automated radiation therapy treatment planning. Methods: A three-step pipeline, comprising feature extraction, dose statistic prediction and dose mimicking, is employed. In particular, the features are produced by a convolutional variational autoencoder and used as inputs in a previously developed nonparametric Bayesian statistical method, estimating the multivariate predictive distribution of a collection of predefined dose statistics. Specially developed objective functions are then used to construct a probabilistic dose mimicking problem based on the produced distributions, creating deliverable treatment plans. Results: The numerical experiments are performed using a dataset of 94 retrospective treatment plans of prostate cancer patients. We show that the features extracted by the variational autoencoder capture geometric information of substantial relevance to the dose statistic prediction problem and are related to dose statistics in a more regularized fashion than hand-crafted features. The estimated predictive distributions are reasonable and outperforms a non-input-dependent benchmark method, and the deliverable plans produced by the probabilistic dose mimicking agree better with their clinical counterparts than for a non-probabilistic formulation. Conclusions: We demonstrate that prediction of dose-related quantities may be extended to include uncertainty estimation and that such probabilistic information may be leveraged in a dose mimicking problem. The treatment plans produced by the proposed pipeline resemble their original counterparts well, illustrating the merits of a holistic approach to automated planning based on probabilistic modeling.
翻译:目的:我们提出一个总框架,用于量化与剂量有关的数量的预测不确定性,并在自动辐射治疗规划中将这一信息用于剂量模拟问题。方法:采用了由特征提取、剂量统计预测和剂量模拟等组成的三步管道。特别是,这些特征由一个变异自动编码混合体生成,并用作以前开发的非参数性巴耶斯统计方法的投入,估计了一套预定剂量统计数据的多变量预测分布。然后,利用特别开发的客观功能,根据所生产的分发的管道,构建一个概率性剂量模拟问题,制定可交付治疗计划。结果:数字实验是使用一套有抗原癌症病人94个追溯治疗计划的数据集进行的。我们表明,通过变异性自动编码采集与剂量统计预测问题密切相关的几何特征,与比手制特征更为正规化的剂量统计有关。预测性分布估计数是合理的,比不依赖预测性的准确性基准处理法更符合不依赖数据的剂量模拟模拟方法,并比可交付的准确性临床预测性计划更准确性:我们所制作的准确性预测性估算的准确性数据可能比预估测。