We consider a multi-armed bandit problem motivated by situations where only the extreme values, as opposed to expected values in the classical bandit setting, are of interest. We propose distribution free algorithms using robust statistics and characterize the statistical properties. We show that the provided algorithms achieve vanishing extremal regret under weaker conditions than existing algorithms. Performance of the algorithms is demonstrated for the finite-sample setting using numerical experiments. The results show superior performance of the proposed algorithms compared to the well known algorithms.


翻译:我们认为,一个多武装的土匪问题,其起因是只有极端值才有意义,而不是古典土匪环境中的预期值。我们建议使用可靠的统计数据进行免费分配算法,并定性统计属性。我们表明,所提供的算法在比现有算法更弱的条件下实现了极端遗憾的消失。算法的运行表现在使用数字实验的有限抽样设定中。结果显示,与众所周知的算法相比,拟议算法的性能优于已知的算法。

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2020年11月4日
专知会员服务
53+阅读 · 2020年9月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
已删除
将门创投
3+阅读 · 2019年1月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Combinatorial Bandits under Strategic Manipulations
Arxiv
0+阅读 · 2021年10月28日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
已删除
将门创投
3+阅读 · 2019年1月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员