We study the bilinearly coupled minimax problem: $\min_{x} \max_{y} f(x) + y^\top A x - h(y)$, where $f$ and $h$ are both strongly convex smooth functions and admit first-order gradient oracles. Surprisingly, no known first-order algorithms have hitherto achieved the lower complexity bound of $\Omega((\sqrt{\frac{L_x}{\mu_x}} + \frac{\|A\|}{\sqrt{\mu_x \mu_y}} + \sqrt{\frac{L_y}{\mu_y}}) \log(\frac1{\varepsilon}))$ for solving this problem up to an $\varepsilon$ primal-dual gap in the general parameter regime, where $L_x, L_y,\mu_x,\mu_y$ are the corresponding smoothness and strongly convexity constants. We close this gap by devising the first optimal algorithm, the Lifted Primal-Dual (LPD) method. Our method lifts the objective into an extended form that allows both the smooth terms and the bilinear term to be handled optimally and seamlessly with the same primal-dual framework. Besides optimality, our method yields a desirably simple single-loop algorithm that uses only one gradient oracle call per iteration. Moreover, when $f$ is just convex, the same algorithm applied to a smoothed objective achieves the nearly optimal iteration complexity. We also provide a direct single-loop algorithm, using the LPD method, that achieves the iteration complexity of $O(\sqrt{\frac{L_x}{\varepsilon}} + \frac{\|A\|}{\sqrt{\mu_y \varepsilon}} + \sqrt{\frac{L_y}{\varepsilon}})$. Numerical experiments on quadratic minimax problems and policy evaluation problems further demonstrate the fast convergence of our algorithm in practice.


翻译:我们研究双线并存的迷你问题 : $\ min ⁇ x} f(x) + y ⁇ top A x - h(y)$, 其中美元和美元都是强烈的顺流函数, 并接受一阶梯形。 令人惊讶的是, 已知的第一阶算法至今尚未达到 $Omega ((\\ qrt\ frac{L_ exumu_ x) 的较低复杂性约束, $_ +\ frac} Asqrt =Lum_ littlex littlex) f( ) a(x) +Lsqtalx x xxxxxxx (mu_ y) y(y)+ yqtroup Axlx listalcalcalcal {yral) 。 当我们第一次以最优化的平流算法 和最优化的平流法 也使得我们的平流法 得以实现。

0
下载
关闭预览

相关内容

【NeurIPS2021】去栅格化的矢量图识别
专知会员服务
16+阅读 · 2021年11月18日
专知会员服务
13+阅读 · 2021年10月12日
专知会员服务
62+阅读 · 2020年3月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员