This paper presents a new paradigm for Extra-large image semantic Segmentation, called ElegantSeg, that capably processes holistic extra-large image semantic segmentation (ELISS). The extremely large sizes of extra-large images (ELIs) tend to cause GPU memory exhaustion. To tackle this issue, prevailing works either follow the global-local fusion pipeline or conduct the multi-stage refinement. These methods can only process limited information at one time, and they are not able to thoroughly exploit the abundant information in ELIs. Unlike previous methods, ElegantSeg can elegantly process holistic ELISS by extending the tensor storage from GPU memory to host memory. To the best of our knowledge, it is the first time that ELISS can be performed holistically. Besides, ElegantSeg is specifically designed with three modules to utilize the characteristics of ELIs, including the multiple large kernel module for developing long-range dependency, the efficient class relation module for building holistic contextual relationships, and the boundary-aware enhancement module for obtaining complete object boundaries. ElegantSeg outperforms previous state-of-the-art on two typical ELISS datasets. We hope that ElegantSeg can open a new perspective for ELISS. The code and models will be made publicly available.
翻译:本文展示了超大图像语义分解的新范例, 叫做 ElegantsSeg, 超大图像的超大语义分解( ELISS) 。 超大图像的超大大小往往导致 GPU 内存耗尽。 要解决这一问题, 流行的作品要么遵循全球- 本地聚合管道, 要么进行多阶段的完善。 这些方法只能同时处理有限的信息, 无法彻底利用 ELIs 中的大量信息。 与以往的方法不同, ElegatsegetSeg 可以通过从 GPU 存储到主机内存储, 优雅地处理整个 ELISS 。 根据我们的最佳知识, 超大图像的大小往往导致 GPU 内存耗尽。 此外, ElegantSegentSeg 专门设计了三个模块来利用 ELISS 的特性, 包括发展远程依赖的多个大内核模块, 建立整体背景关系的有效级关系模块, 以及获取完整对象界限的边界增强模块 。 ElegentSegrag 超越了 EIS 之前的典型的Elas- LISSet 代码。