We study the dihedral multi-reference alignment problem of estimating the orbit of a signal from multiple noisy observations of the signal, translated by random elements of the dihedral group. We show that if the group elements are drawn from a generic distribution, the orbit of a generic signal is uniquely determined from the second moment of the observations. This implies that the optimal estimation rate in the high noise regime is proportional to the square of the variance of the noise. This is the first result of this type for multi-reference alignment over a non-abelian group with a non-uniform distribution of group elements. Based on tools from invariant theory and algebraic geometry, we also delineate conditions for unique orbit recovery for multi-reference alignment models over finite groups (namely, when the dihedral group is replaced by a general finite group) when the group elements are drawn from a generic distribution. Finally, we design and study numerically three computational frameworks for estimating the signal based on group synchronization, expectation-maximization, and the method of moments.
翻译:我们研究了从多声观测信号的多振度观测中估计信号轨道的双向多参考比对齐问题,该信号由异差组的随机元素翻译。我们表明,如果组元素从一般分布中抽取,一般信号的轨道从观测的第二个时刻起就被单独确定。这意味着,高噪声系统中的最佳估计率与噪音差异的平方成正比。这是这种类型的第一种结果,即,对非孕类组和非统一分布的组元素进行多重参照比对。根据异变理论和代数几何测量工具,我们还界定了在从一般分布中抽取组元素时(即以一般定数组取代该组时),对定数组多参照调整模型的独特轨道回收条件。最后,我们设计和研究三个数字计算框架,用以根据群体同步、预期-最大化和瞬时法估算信号。