Working in a variant of the intersection type assignment system of Coppo, Dezani-Ciancaglini and Veneri [1981], we prove several facts about sets of terms having a given intersection type. One of our results is that every strongly normalizing term M admits a *uniqueness typing*, which is a pair $(\Gamma,A)$ such that 1) $\Gamma \vdash M : A$ 2) $\Gamma \vdash N : A \Longrightarrow M =_{\beta\eta} N$ We also discuss several presentations of intersection type algebras, and the corresponding choices of type assignment rules. In the second part of the paper, we prove that the set of closed terms having a given intersection type is separable, and, if infinite, forms an adequate numeral system.
翻译:以Coppo、Dezani-Ciancaglini和Veneri的交叉类型分配体系[1981年]的变式工作,我们证明了关于具有特定交叉类型的各种术语的几个事实。我们的结果之一是,每个强烈正常化的 M 术语都接受“ uniquenity type * ”, 即一对美元(Gamma,A), 即1美元(Gamma \ vdash M : A$ 2) $\ Gamma \ vdash N : A\ Longrightrow M ⁇ beta\eta}N$(N$ ),我们还讨论多个交叉型代数的演示,以及相应的类型分配规则选择。在文件第二部分,我们证明具有特定交叉类型的封闭术语是可分解的,如果是无限的,则形成一个适当的数字系统。