The condition-based complexity analysis framework is one of the gems of modern numerical algebraic geometry and theoretical computer science. Among the challenges that it poses is to expand the currently limited range of random polynomials that we can handle. Despite important recent progress, the available tools cannot handle random sparse polynomials and Gaussian polynomials, that is polynomials whose coefficients are i.i.d. Gaussian random variables. We initiate a condition-based complexity framework based on the norm of the cube that is a step in this direction. We present this framework for real hypersurfaces and univariate polynomials. We demonstrate its capabilities in two problems, under very mild probabilistic assumptions. On the one hand, we show that the average run-time of the Plantinga-Vegter algorithm is polynomial in the degree for random sparse (alas a restricted sparseness structure) polynomials and random Gaussian polynomials. On the other hand, we study the size of the subdivision tree for Descartes' solver and run-time of the solver by Jindal and Sagraloff (arXiv:1704.06979). In both cases, we provide a bound that is polynomial in the size of the input (size of the support plus the logarithm of the degree) not only for the average but also for all higher moments.
翻译:以条件为基础的复杂度分析框架是现代数字代数几何和理论计算机科学的宝石之一。 它构成的挑战之一是扩大目前我们所能处理的有限随机多数值范围。 尽管最近取得了重要进展, 可用的工具无法处理随机稀释的多元数和高斯多数值, 即其系数为 i.d. 高斯随机变量的多元数分析框架。 我们根据立方的规范启动基于条件的复杂度框架, 这是朝这个方向迈出的一步。 我们为真实的超表层和非伊波利亚特多数值提供这个框架。 我们展示了它在两个问题上的能力, 在非常温和的概率假设下。 一方面, 我们显示Plantinga- Vegter 算法的平均运行时间对于随机稀释( ALs 一种有限的稀释结构) 多元数和随机高斯多数值的多元数值框架。 另一方面, 我们研究的是真实的超表层图树的大小, 而不是高亚值 多元数 。 Indal- adal creal creal case. In and the wedivistial develal sual colal deal.