This work is concerned with the numerical solution of large-scale symmetric positive definite matrix equations of the form $A_1XB_1^\top + A_2XB_2^\top + \dots + A_\ell X B_\ell^\top = F$, as they arise from discretized partial differential equations and control problems. One often finds that $X$ admits good low-rank approximations, in particular when the right-hand side matrix $F$ has low rank. For $\ell \le 2$ terms, the solution of such equations is well studied and effective low-rank solvers have been proposed, including Alternating Direction Implicit (ADI) methods for Lyapunov and Sylvester equations. For $\ell > 2$, several existing methods try to approach $X$ through combining a classical iterative method, such as the conjugate gradient (CG) method, with low-rank truncation. In this work, we consider a more direct approach that approximates $X$ on manifolds of fixed-rank matrices through Riemannian CG. One particular challenge is the incorporation of effective preconditioners into such a first-order Riemannian optimization method. We propose several novel preconditioning strategies, including a change of metric in the ambient space, preconditioning the Riemannian gradient, and a variant of ADI on the tangent space. Combined with a strategy for adapting the rank of the approximation, the resulting method is demonstrated to be competitive for a number of examples representative for typical applications.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员