Offline reinforcement learning (RL) aims to learn a policy that maximizes the expected cumulative reward using a pre-collected dataset. Offline RL with low-rank MDPs or general function approximation has been widely studied recently, but existing algorithms with sample complexity $O(\epsilon^{-2})$ for finding an $\epsilon$-optimal policy either require a uniform data coverage assumptions or are computationally inefficient. In this paper, we propose a primal dual algorithm for offline RL with low-rank MDPs in the discounted infinite-horizon setting. Our algorithm is the first computationally efficient algorithm in this setting that achieves sample complexity of $O(\epsilon^{-2})$ with partial data coverage assumption. This improves upon a recent work that requires $O(\epsilon^{-4})$ samples. Moreover, our algorithm extends the previous work to the offline constrained RL setting by supporting constraints on additional reward signals.
翻译:暂无翻译