Novel view synthesis from a single image aims at generating novel views from a single input image of an object. Several works recently achieved remarkable results, though require some form of multi-view supervision at training time, therefore limiting their deployment in real scenarios. This work aims at relaxing this assumption enabling training of conditional generative model for novel view synthesis in a completely unsupervised manner. We first pre-train a purely generative decoder model using a GAN formulation while at the same time training an encoder network to invert the mapping from latent code to images. Then we swap encoder and decoder and train the network as a conditioned GAN with a mixture of auto-encoder-like objective and self-distillation. At test time, given a view of an object, our model first embeds the image content in a latent code and regresses its pose w.r.t. a canonical reference system, then generates novel views of it by keeping the code and varying the pose. We show that our framework achieves results comparable to the state of the art on ShapeNet and that it can be employed on unconstrained collections of natural images, where no competing method can be trained.


翻译:从单一图像中生成的新视角合成,目的是从一个对象的单一输入图像中生成新观点。 几个作品最近取得了显著的成果, 虽然在培训时需要某种形式的多视图监督, 从而限制其在真实情景中的部署。 这项工作旨在放松这一假设, 从而能够以完全不受监督的方式为新视图合成提供有条件的基因模型培训。 我们首先使用 GAN 配制的纯基因化解码模型进行预演, 同时训练编码网络将映射从潜在代码转换成图像。 然后我们交换编码和解码器, 将网络训练成一个条件化的GAN, 将它与自动编码相似的目标和自我蒸馏相结合。 在测试时, 从一个对象的视角来看, 我们的模型首先将图像内容嵌入一个隐形代码, 并重新反射其形状 w.r.t. 。 一种可隐形的参考系统, 然后通过保存代码和变形来生成对它的新观点。 我们显示, 我们的框架取得了与ShapeNet 上艺术状态相近的结果, 并且可以用来在不相容的自然图像的收藏中, 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Python图像处理,366页pdf,Image Operators Image Processing in Python
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2018年11月27日
Arxiv
11+阅读 · 2018年1月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员