Disentanglement is a difficult property to enforce in neural representations. This might be due, in part, to a formalization of the disentanglement problem that focuses too heavily on separating relevant factors of variation of the data in single isolated dimensions of the neural representation. We argue that such a definition might be too restrictive and not necessarily beneficial in terms of downstream tasks. In this work, we present an alternative view over learning (weakly) disentangled representations, which leverages concepts from relational learning. We identify the regions of the latent space that correspond to specific instances of generative factors, and we learn the relationships among these regions in order to perform controlled changes to the latent codes. We also introduce a compound generative model that implements such a weak disentanglement approach. Our experiments shows that the learned representations can separate the relevant factors of variation in the data, while preserving the information needed for effectively generating high quality data samples.
翻译:分解是一种难以在神经表征中加以执行的财产,部分原因可能是分解问题已经正规化,过于注重分离神经表征单一孤立方面数据变化的相关因素。我们争辩说,这种定义可能过于严格,不一定有利于下游任务。在这项工作中,我们提出了另一种观点,而不是学习(微弱)分解的表示,这种表达能够利用关系学习的概念。我们查明了与基因学因素具体实例相对应的潜在空间区域,我们了解了这些区域之间的关系,以便对潜在代码进行有控制的改变。我们还采用了一种复合基因模型,采用这种薄弱的分解方法。我们的实验表明,所学的表示可以区分数据差异的相关因素,同时保留有效生成高质量数据样本所需的信息。