The creation of a parameterized stylized character involves careful selection of numerous parameters, also known as the "avatar vectors" that can be interpreted by the avatar engine. Existing unsupervised avatar vector estimation methods that auto-create avatars for users, however, often fail to work because of the domain gap between realistic faces and stylized avatar images. To this end, we propose SwiftAvatar, a novel avatar auto-creation framework that is evidently superior to previous works. SwiftAvatar introduces dual-domain generators to create pairs of realistic faces and avatar images using shared latent codes. The latent codes can then be bridged with the avatar vectors as pairs, by performing GAN inversion on the avatar images rendered from the engine using avatar vectors. Through this way, we are able to synthesize paired data in high-quality as many as possible, consisting of avatar vectors and their corresponding realistic faces. We also propose semantic augmentation to improve the diversity of synthesis. Finally, a light-weight avatar vector estimator is trained on the synthetic pairs to implement efficient auto-creation. Our experiments demonstrate the effectiveness and efficiency of SwiftAvatar on two different avatar engines. The superiority and advantageous flexibility of SwiftAvatar are also verified in both subjective and objective evaluations.
翻译:创建参数化星形特性需要仔细选择众多参数, 也称为“ fatar 矢量 ” 。 现有的未经监督的 fatar 矢量估计方法, 用户自动创建 vatar 的 vatar 的矢量估计方法, 但是, 用户自动创建 vatar 往往由于现实面与星体图像之间的域差而不能发挥作用。 为此, 我们提议 SwaiftAvatar, 一个新的 fatar 自动生成框架, 明显优于先前的作品。 SwiftAvatar 引入双倍的生成器, 以便用共享的隐性代码来创建现实面貌和 fatar 图像的组合。 潜伏代码可以与 vatar 矢量矢量矢量矢量矢量为配对连接, 通过使用 fatar 矢量为来自引擎的星体图像进行 GAN 转换。 通过这个方式, 我们能够尽可能多地对配对配对数据进行合成, 由 fatar 矢量 及其对应的现实面面面面。 我们还提议通过 mantical 扩增 来改进合成合成的合成多样性评估 。 最后, 我们的Swatarevatoralalalalalalalalalalalalalalalal- 。 在Swaftaltoalaltotoal