Recent DEtection TRansformer-based (DETR) models have obtained remarkable performance. Its success cannot be achieved without the re-introduction of multi-scale feature fusion in the encoder. However, the excessively increased tokens in multi-scale features, especially for about 75\% of low-level features, are quite computationally inefficient, which hinders real applications of DETR models. In this paper, we present Lite DETR, a simple yet efficient end-to-end object detection framework that can effectively reduce the GFLOPs of the detection head by 60\% while keeping 99\% of the original performance. Specifically, we design an efficient encoder block to update high-level features (corresponding to small-resolution feature maps) and low-level features (corresponding to large-resolution feature maps) in an interleaved way. In addition, to better fuse cross-scale features, we develop a key-aware deformable attention to predict more reliable attention weights. Comprehensive experiments validate the effectiveness and efficiency of the proposed Lite DETR, and the efficient encoder strategy can generalize well across existing DETR-based models. The code will be available in \url{https://github.com/IDEA-Research/Lite-DETR}.


翻译:最近的脱氧核糖核酸模型(DETR)取得了显著的成绩,如果不在编码器中重新引入多级特征聚合,就无法取得成功。然而,多级特征中过度增加的象征物,特别是约75<unk> 低级特征的象征物,在计算上效率相当低,妨碍了脱氧核酸模型的真正应用。在本文件中,我们介绍了一个简单而高效的端到端天天探测框架,即Lite DETR,它是一个简单而高效的端到端天体检测框架,可以有效地将检测头GFLOP减少60<unk>,同时保留原有的绩效99<unk> 。具体地说,我们设计了一个高效的编码器块,以在互连方式更新高级特征(对小分辨率特征图的对应物)和低级特征(对大分辨率特征图的对应物)。此外,为了改进引信的跨级特征,我们开发了一个关键的觉分解的注意点,以预测更可靠的关注重量。全面实验验证了拟议的脱氧核酸脱氧核糖基的有效性和效率,以及高效的编码战略可以在现有的DTR/Recommas 中通用模型。</s>

0
下载
关闭预览

相关内容

Performance:International Symposium on Computer Performance Modeling, Measurements and Evaluation。 Explanation:计算机性能建模、测量和评估国际研讨会。 Publisher:ACM。 SIT:http://dblp.uni-trier.de/db/conf/performance/
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员