We describe a new complete algorithm for computing Nash equilibrium in multiplayer general-sum games, based on a quadratically-constrained feasibility program formulation. We demonstrate that the algorithm runs significantly faster than the prior fastest complete algorithm on several game classes previously studied and that its runtimes even outperform the best incomplete algorithms.
翻译:我们描述一个在多玩家一般和游戏中计算纳什平衡的新的完整算法,这个算法基于一个受二次限制的可行性程序配方。 我们证明算法比以前研究过的几类游戏中之前最快的完整算法运行速度要快得多,其运行时间甚至超过了最佳的不完全算法。