Offline reinforcement learning (offline RL) is an emerging field that has recently begun gaining attention across various application domains due to its ability to learn strategies from earlier collected datasets. Offline RL proved very successful, paving a path to solving previously intractable real-world problems, and we aim to generalize this paradigm to a multiplayer-game setting. To this end, we introduce a problem of offline equilibrium finding (OEF) and construct multiple types of datasets across a wide range of games using several established methods. To solve the OEF problem, we design a model-based framework that can directly apply any online equilibrium finding algorithm to the OEF setting while making minimal changes. The three most prominent contemporary online equilibrium finding algorithms are adapted to the context of OEF, creating three model-based variants: OEF-PSRO and OEF-CFR, which generalize the widely-used algorithms PSRO and Deep CFR to compute Nash equilibria (NEs), and OEF-JPSRO, which generalizes the JPSRO to calculate (Coarse) Correlated equilibria ((C)CEs). We also combine the behavior cloning policy with the model-based policy to further improve the performance and provide a theoretical guarantee of the solution quality. Extensive experimental results demonstrate the superiority of our approach over offline RL algorithms and the importance of using model-based methods for OEF problems. We hope our work will contribute to advancing research in large-scale equilibrium finding.


翻译:离线强化学习(离线 RL)是一个新兴领域,最近开始在各种应用领域引起关注,因为其有能力从先前收集的数据集中学习战略。离线RL证明非常成功,为解决以往棘手的现实世界问题铺平了一条道路,我们的目标是将这一范式推广到多玩游戏的设置。为此,我们引入了一个离线平衡发现(OEF)问题,并采用若干既定方法在各种游戏中构建多种类型的数据集。为了解决OEF问题,我们设计了一个基于模型的框架,该框架可以直接将任何在线平衡查找算法应用到OEF的设置中,同时作出最小的改变。三种最突出的当代在线平衡查找算法适应了OEF的范畴,创建了三种基于模型的变体:OEF-PSRO和OEF-CFR的变体。我们将广泛使用的算法的PSRO和深CFR用于计算纳什基的模型(NES)和基于OEFRO的O-JPSRO, 将JSRO的计算(C-C-C-COL)模型相关精度模型的算法用于不断推进的实验性政策解决方案,我们还将利用实验性分析方法,以进一步展示性分析方法,以提升我们的实验性方法来改进我们的实验性研究。

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
36+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
24+阅读 · 2021年1月25日
VIP会员
相关VIP内容
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
36+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员