We introduce the following natural generalization of trace reconstruction, parameterized by a deletion probability $\delta \in (0,1)$ and length $n$: There is a length $n$ string of probabilities, $S=p_1,\ldots,p_n,$ and each "trace" is obtained by 1) sampling a length $n$ binary string whose $i$th coordinate is independently set to 1 with probability $p_i$ and 0 otherwise, and then 2) deleting each of the binary values independently with probability $\delta$, and returning the corresponding binary string of length $\le n$. The goal is to recover an estimate of $S$ from a set of independently drawn traces. In the case that all $p_i \in \{0,1\}$ this is the standard trace reconstruction problem. We show two complementary results. First, for worst-case strings $S$ and any deletion probability at least order $1/\sqrt{n}$, no algorithm can approximate $S$ to constant $\ell_\infty$ distance or $\ell_1$ distance $o(\sqrt n)$ using fewer than $2^{\Omega(\sqrt{n})}$ traces. Second -- as in the case for standard trace reconstruction -- reconstruction is easy for random $S$: for any sufficiently small constant deletion probability, and any $\epsilon>0$, drawing each $p_i$ independently from the uniform distribution over $[0,1]$, with high probability $S$ can be recovered to $\ell_1$ error $\epsilon$ using $\mathrm{poly}(n,1/\epsilon)$ traces and computation time. We show indistinguishability in our lower bound by regarding a complicated alternating sum (comparing two distributions) as the Fourier transformation of some function evaluated at $\pm \pi,$ and then showing that the Fourier transform decays rapidly away from zero by analyzing its moment generating function.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员