Infinite-order U-statistics (IOUS) has been used extensively on subbagging ensemble learning algorithms such as random forests to quantify its uncertainty. While normality results of IOUS have been studied extensively, its variance estimation approaches and theoretical properties remain mostly unexplored. Existing approaches mainly utilize the leading term dominance property in the Hoeffding decomposition. However, such a view usually leads to biased estimation when the kernel size is large or the sample size is small. On the other hand, while several unbiased estimators exist in the literature, their relationships and theoretical properties, especially the ratio consistency, have never been studied. These limitations lead to unguaranteed performances of constructed confidence intervals. To bridge these gaps in the literature, we propose a new view of the Hoeffding decomposition for variance estimation that leads to an unbiased estimator. Instead of leading term dominance, our view utilizes the dominance of the peak region. Moreover, we establish the connection and equivalence of our estimator with several existing unbiased variance estimators. Theoretically, we are the first to establish the ratio consistency of such a variance estimator, which justifies the coverage rate of confidence intervals constructed from random forests. Numerically, we further propose a local smoothing procedure to improve the estimator's finite sample performance. Extensive simulation studies show that our estimators enjoy lower bias and archive targeted coverage rates.


翻译:无限的U-统计学(IOUS)被广泛用于低沉的混合学习算法,如随机森林,以量化其不确定性。虽然对IOUS的正常性结果进行了广泛研究,但其差异估计方法和理论属性大多尚未探索。现有方法主要利用Hoffding分解中的主要术语优势属性。然而,这种观点通常导致在内核大小大或抽样规模小时有偏颇的估计。另一方面,虽然文献中存在若干不偏袒的估算师,但其关系和理论属性,特别是比率一致性,却从未进行过研究。这些限制导致建立信心间隔期的超常性性能。为弥合文献中的这些差距,我们提出了新的观点,认为差异估计的“Hoffing dcommation ”导致公正的估计。我们的观点不是主要术语的主导,而是利用峰值区域的主导地位。此外,我们建立了我们的估算师与若干现有的公正差异估计师的联系和等同性。从理论上看,我们是第一个从构建范围到确定比例比例的随机性比例,我们首先提出了一种衡量比例的概率比,从而证明我们保持这种差异的准确性比例。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年7月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月6日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年7月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员