We study the computational complexity of "public goods games on networks". In this model, each vertex in a graph is an agent that needs to take a binary decision of whether to "produce a good" or not. Each agent's utility depends on the number of its neighbors in the graph that produce the good, as well as on its own action. This dependence can be captured by a "pattern" $T:{\rm I\!N}\rightarrow\{0,1\}$ that describes an agent's best response to every possible number of neighbors that produce the good. Answering a question of [Papadimitriou and Peng, 2021], we prove that for some simple pattern $T$ the problem of determining whether a non-trivial pure Nash equilibrium exists is NP-complete. We extend our result to a wide class of such $T$, but also find a new polynomial time algorithm for some specific simple pattern $T$. We leave open the goal of characterizing the complexity for all patterns.
翻译:我们研究了“ 网络上公共产品游戏” 的计算复杂性。 在这个模型中, 图表中的每个顶点都是一个代理人, 需要做出一个二进制决定 是否“ 生产一件好事 ” 。 每个代理人的效用取决于图表中产生一件好事的邻居数量, 也取决于自己的动作。 这种依赖性可以通过“ 模式” $T 来捕捉 $T : $T! N ⁇ rightrrow ⁇ 0, 1 $ 来描述一个代理人对产生一件好事的每一个可能的邻居的最佳反应。 回答一个问题[ Papadimitriou 和 Peng, 20211], 我们证明对于某些简单模式来说, 确定一个非三角纯纳什平衡是否存在的问题是NP- 完整的。 我们将我们的结果推广到一个宽广的等级, $T $, 但也为某些特定的简单模式 $T 找到一个新的多元时间算法 。 我们保留了所有模式的复杂性化的目标 。