We continue the study of linear layouts of graphs in relation to known data structures. At a high level, given a data structure, the goal is to find a linear order of the vertices of the graph and a partition of its edges into pages, such that the edges in each page follow the restriction of the given data structure in the underlying order. In this regard, the most notable representatives are the stack and queue layouts, while there exists some work also for deques. In this paper, we study linear layouts of graphs that follow the restriction of a restricted-input queue (rique), in which insertions occur only at the head, and removals occur both at the head and the tail. We characterize the graphs admitting rique layouts with a single page and we use the characterization to derive a corresponding testing algorithm when the input graph is maximal planar. We finally give bounds on the number of needed pages (so-called rique-number) of complete graphs.
翻译:我们继续研究与已知数据结构有关的图表线性布局。 在高层次上, 如果有数据结构, 目标是找到图形顶端的线性顺序, 并将其边缘分割为页面, 这样每页的边缘都遵循基本顺序对给定数据结构的限制。 在这方面, 最显著的代表是堆叠和队列布局, 而对于 deques 也有一些工作 。 在本文中, 我们研究限制限制输入队列( rique) 之后的图表线性布局, 其中只插入头部, 清除在头部和尾部。 我们用单页来描述接受正方形布局的图表, 我们用特征来得出输入图是最大平面的对应的测试算法。 我们最后给出完整图表所需页面( 所谓的 riquen- number) 的界限 。