The Natarajan dimension is a fundamental tool for characterizing multi-class PAC learnability, generalizing the Vapnik-Chervonenkis (VC) dimension from binary to multi-class classification problems. This note establishes upper bounds on Natarajan dimensions for certain function classes, including (i) multi-class decision tree and random forests, and (ii) multi-class neural networks with binary, linear and ReLU activations. These results may be relevant for describing the performance of certain multi-class learning algorithms.
翻译:Natarajan维度是确定多级PAC可学习性的基本工具,将Vapnik-Chervonenkis(VC)维度从二进制到多级分类问题。本说明为某些功能类别,包括(一) 多级决策树和随机森林,(二) 多级神经网络,其二是二进制、线性、RELU的激活。这些结果可能与描述某些多级学习算法的性能有关。