End-to-end (E2E) speech recognition architectures assemble all components of traditional speech recognition system into a single model. Although it simplifies ASR system, it introduces contextual ASR drawback: the E2E model has worse performance on utterances containing infrequent proper nouns. In this work, we propose to add a contextual bias attention (CBA) module to attention based encoder decoder (AED) model to improve its ability of recognizing the contextual phrases. Specifically, CBA utilizes the context vector of source attention in decoder to attend to a specific bias embedding. Jointly learned with the basic AED parameters, CBA can tell the model when and where to bias its output probability distribution. At inference stage, a list of bias phrases is preloaded and we adapt the posterior distributions of both CTC and attention decoder according to the attended bias phrase of CBA. We evaluate the proposed method on GigaSpeech and achieve a consistent relative improvement on recall rate of bias phrases ranging from 15% to 28% compared to the baseline model. Meanwhile, our method shows a strong anti-bias ability as the performance on general tests only degrades 1.7% even 2,000 bias phrases are present.


翻译:终端到终端语音识别结构( E2E) 语音识别结构( E2E) 将传统语音识别系统的所有组成部分集合成一个单一模式。 虽然它简化了 ASR 系统, 它引入了背景 ASR 退步: E2E 模型在含有非正常适当名词的发音上表现较差。 在这项工作中, 我们提议添加一个背景偏见关注模块( CBA) 模块( CBA) 以关注基于编码器解码器解码器( AED) 的模式, 以提高其识别相关词句的能力。 具体地说, CBA 将源注意的上下文矢量用于解码嵌入特定的偏差嵌入。 与基本 AED 参数共同学习, CBA 可以告诉模型何时和何处偏差其输出概率分布。 在推断阶段, 偏差词组的列表被预先加载, 我们根据所参加的 CBABA的偏差短语调整了CT和注意力解码器( AED) 。 我们评估了GigSpeech 的拟议方法, 在回顾从15%到28%的偏差词比基线模型的偏差率方面取得了一致的相对的改进。 同时, 我们的方法仅展示了1.7能力测试了2 000。

0
下载
关闭预览

相关内容

专知会员服务
43+阅读 · 2021年4月23日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员