Although autonomy has gained widespread usage in structured and controlled environments, robotic autonomy in unknown and off-road terrain remains a difficult problem. Extreme, off-road, and unstructured environments such as undeveloped wilderness, caves, rubble, and other post-disaster sites pose unique and challenging problems for autonomous navigation. Based on our participation in the DARPA Subterranean Challenge, we propose an approach to improve autonomous traversal of robots in subterranean environments that are perceptually degraded and completely unknown through a traversability and planning framework called STEP (Stochastic Traversability Evaluation and Planning). We present 1) rapid uncertainty-aware mapping and traversability evaluation, 2) tail risk assessment using the Conditional Value-at-Risk (CVaR), 3) efficient risk and constraint-aware kinodynamic motion planning using sequential quadratic programming-based (SQP) model predictive control (MPC), 4) fast recovery behaviors to account for unexpected scenarios that may cause failure, and 5) risk-based gait adaptation for quadrupedal robots. We illustrate and validate extensive results from our experiments on wheeled and legged robotic platforms in field studies at the Valentine Cave, CA (cave environment), Kentucky Underground, KY (mine environment), and Louisville Mega Cavern, KY (final competition site for the DARPA Subterranean Challenge with tunnel, urban, and cave environments).
翻译:虽然在结构化和有控制的环境下,自治得到了广泛使用,但未知和越野地形的机器人自主仍然是一个困难的问题,极端、越野和无结构的环境,如未开发的荒野、洞穴、瓦砾和其他灾后地点,对自主导航构成独特和具有挑战性的问题。根据我们对DARPA地下挑战的参与,我们提出一种办法,用基于连续的四边式编程模型预测控制,改善在概念性退化和完全未知的地下环境中机器人的自主穿行,通过一个称为STEP(随机易变性评估和规划)的穿行和规划框架,迅速进行具有不确定性的绘图和可穿行性评价,2)利用条件值值值(CVaR)、3)高效风险和约束性运动规划,利用基于连续四边式编程(SQP)模型预测控制,4)快速恢复行为,以说明可能造成失败的意外假想情况,5)对四边机器人进行基于风险的轨迹调整。 我们用透明地图绘制和滚动评估,在Climbal-CA的实地环境上,以实地试验,(Creal-Cretavial-Cal-Climal-Cal-Cal-Cal-Ela 环境,进行实地试验,进行。</s>