In this study, we develop a methodology for model reduction and selection informed by global sensitivity analysis (GSA) methods. We apply these techniques to a control model that takes systolic blood pressure and thoracic tissue pressure data as inputs and predicts heart rate in response to the Valsalva maneuver (VM). The study compares four GSA methods based on Sobol' indices (SIs) quantifying the parameter influence on the difference between the model output and the heart rate data. The GSA methods include standard scalar SIs determining the average parameter influence over the time interval studied and three time-varying methods analyzing how parameter influence changes over time. The time-varying methods include a new technique, termed limited-memory SIs, predicting parameter influence using a moving window approach. Using the limited-memory SIs, we perform model reduction and selection to analyze the necessity of modeling both the aortic and carotid baroreceptor regions in response to the VM. We compare the original model to three systematically reduced models including (i) the aortic and carotid regions, (ii) the aortic region only, and (iii) the carotid region only. Model selection is done quantitatively using the Akaike and Bayesian Information Criteria and qualitatively by comparing the neurological predictions. Results show that it is necessary to incorporate both the aortic and carotid regions to model the VM.
翻译:在本研究中,我们根据全球敏感度分析(GSA)方法,为模型的减少和选择制定了一种方法。我们将这些技术应用到一种控制模型,该模型将血压和胸腔组织压力数据作为投入,并预测响应Valsalva 操作(VM)的心跳率。根据Sobol' 指数(SIs),将参数对模型输出和心率数据之间差异的影响进行量化,对四种GSA方法进行了比较。GSA方法包括确定所研究时间间隔中平均参数影响的标准标度SI,以及三个分析参数如何影响时间变化的有时间变化的方法。时间变化方法包括一种新的技术,称为有限的模拟SIS,使用移动窗口法预测参数影响。我们使用有限的模拟SIS,进行模型的减少和选择,以分析对模型输出输出输出输出和偏移偏移的Barotbor 接受器区域进行建模的必要性。我们将原模型与三个系统缩小的模型进行了比较,包括(i) 亚科和卡罗特区域,(ii) 只能用模型和卡洛特区域进行对比。