A stochastic search method, the so-called Adaptive Subspace (AdaSub) method, is proposed for variable selection in high-dimensional linear regression models. The method aims at finding the best model with respect to a certain model selection criterion and is based on the idea of adaptively solving low-dimensional sub-problems in order to provide a solution to the original high-dimensional problem. Any of the usual $\ell_0$-type model selection criteria can be used, such as Akaike's Information Criterion (AIC), the Bayesian Information Criterion (BIC) or the Extended BIC (EBIC), with the last being particularly suitable for high-dimensional cases. The limiting properties of the new algorithm are analysed and it is shown that, under certain conditions, AdaSub converges to the best model according to the considered criterion. In a simulation study, the performance of AdaSub is investigated in comparison to alternative methods. The effectiveness of the proposed method is illustrated via various simulated datasets and a high-dimensional real data example.


翻译:高维线性回归模型的可变选择方法,即所谓的适应性子空间(AdaSub)方法。该方法旨在找到某些模型选择标准的最佳模式,其依据是适应性地解决低维次问题的想法,以便为最初的高维问题提供解决办法。任何通常的美元=0美元模式选择标准都可以使用,如Akaike的信息标准(AIC)、Bayesian信息标准(BIC)或扩展型BIC(EBIC)等,最后一种方法特别适合高维情况。新算法的限制特性得到了分析,并表明在某些条件下,AdaSub根据所考虑的标准与最佳模型一致。在模拟研究中,AdaSub的性能与替代方法相比较,通过各种模拟数据集和一个高维真实数据示例来说明拟议方法的有效性。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【干货书】数据科学手册,456页pdf
专知会员服务
149+阅读 · 2021年4月27日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
28+阅读 · 2020年11月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Adaptive transfer learning
Arxiv
0+阅读 · 2021年6月8日
Arxiv
7+阅读 · 2021年5月25日
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员