Global sensitivity analysis aims at quantifying the impact of input variability onto the variation of the response of a computational model. It has been widely applied to deterministic simulators, for which a set of input parameters has a unique corresponding output value. Stochastic simulators, however, have intrinsic randomness due to their use of (pseudo)random numbers, so they give different results when run twice with the same input parameters but non-common random numbers. Due to this random nature, conventional Sobol' indices, used in global sensitivity analysis, can be extended to stochastic simulators in different ways. In this paper, we discuss three possible extensions and focus on those that depend only on the statistical dependence between input and output. This choice ignores the detailed data generating process involving the internal randomness, and can thus be applied to a wider class of problems. We propose to use the generalized lambda model to emulate the response distribution of stochastic simulators. Such a surrogate can be constructed without the need for replications. The proposed method is applied to three examples including two case studies in finance and epidemiology. The results confirm the convergence of the approach for estimating the sensitivity indices even with the presence of strong heteroskedasticity and small signal-to-noise ratio.
翻译:全球敏感度分析旨在量化投入变异对计算模型反应变化的影响,它被广泛应用于确定性模拟器,对于这些模拟器,一套输入参数具有独特的相应输出值。然而,由于使用(假)随机数,模拟器具有内在随机性,因此在使用相同输入参数但非常见随机数的两次运行时,它们产生不同的结果。由于这种随机性,全球敏感度分析中使用的常规Sobol'指数可以以不同方式扩大到随机模拟器。在本文件中,我们讨论三种可能的扩展,并侧重于那些仅依赖投入和产出之间统计依赖的扩展。这种选择忽视了涉及内部随机性的详细数据生成过程,因此可以适用于更广泛的问题类别。我们提议使用通用的羊毛模型来模仿随机模拟器的反应分布。这种模拟器可以不必复制而构建。拟议的方法适用于三个例子,包括金融和信号率的两种案例研究。他对精确度的精确度和精确度的精确度的精确度,结果可以证实他与精确度的精确度方法的趋同性。