This study explores the use of the Dirichlet Variational Autoencoder (DirVAE) for learning disentangled latent representations of chest X-ray (CXR) images. Our working hypothesis is that distributional sparsity, as facilitated by the Dirichlet prior, will encourage disentangled feature learning for the complex task of multi-label classification of CXR images. The DirVAE is trained using CXR images from the CheXpert database, and the predictive capacity of multi-modal latent representations learned by DirVAE models is investigated through implementation of an auxiliary multi-label classification task, with a view to enforce separation of latent factors according to class-specific features. The predictive performance and explainability of the latent space learned using the DirVAE were quantitatively and qualitatively assessed, respectively, and compared with a standard Gaussian prior-VAE (GVAE). We introduce a new approach for explainable multi-label classification in which we conduct gradient-guided latent traversals for each class of interest. Study findings indicate that the DirVAE is able to disentangle latent factors into class-specific visual features, a property not afforded by the GVAE, and achieve a marginal increase in predictive performance relative to GVAE. We generate visual examples to show that our explainability method, when applied to the trained DirVAE, is able to highlight regions in CXR images that are clinically relevant to the class(es) of interest and additionally, can identify cases where classification relies on spurious feature correlations.
翻译:这项研究探索了DirVAE (DirVAE) 用于学习胸X射线(CXR) 图像的分解潜表层。 我们的工作假设是,在Dirrichlet 之前的推动下,分布宽度将鼓励为 CXR 图像的多标签分类的复杂任务进行分解的特性学习。 DirVAE 使用CheXpert 数据库的 CXR 图像进行培训,DirVAE 模型所学的多模式潜层表层(DirVAE ) 的预测能力将通过执行辅助多标签分类任务来调查,以期根据特定类别的特点对潜在因素进行分解。 使用DirVAE 的预测性能和解释空间的可解释性能将分别进行定量和定性评估,并与标准GVAE 前VAE 数据库(GVAE ) 进行标准性能性能分类。 我们引入了一种新的方法来解释可解释性多标签直线,即我们用渐变导的潜潜行路径来确定每一类。 研究发现DirVAE 在视觉特性中, 直观的直观特性中, 直观性能中,我们通过直观的直观的直观分析方法可以产生一种直观的直观的直观的直观的直观的直观的直观分析方法可以产生对地球的直观的直观的直观的直观的直观的直观的直观的直观解释到到到的直观的直观的直观的直观的直径径径。