The ability to discover abstract physical concepts and understand how they work in the world through observing lies at the core of human intelligence. The acquisition of this ability is based on compositionally perceiving the environment in terms of objects and relations in an unsupervised manner. Recent approaches learn object-centric representations and capture visually observable concepts of objects, e.g., shape, size, and location. In this paper, we take a step forward and try to discover and represent intrinsic physical concepts such as mass and charge. We introduce the \uppercase{phy}sical \uppercase{c}oncepts \uppercase{i}nference \uppercase{ne}twork (PHYCINE), a system that infers physical concepts in different abstract levels without supervision. The key insights underlining PHYCINE are two-fold, commonsense knowledge emerges with prediction, and physical concepts of different abstract levels should be reasoned in a bottom-up fashion. Empirical evaluation demonstrates that variables inferred by our system work in accordance with the properties of the corresponding physical concepts. We also show that object representations containing the discovered physical concepts variables could help achieve better performance in causal reasoning tasks, i.e., ComPhy.


翻译:通过观察发现抽象物理概念和理解这些抽象物理概念在世界上如何运作的能力,是人类智能的核心。获得这种能力的基础是以不受监督的方式从物体和关系的角度对环境进行构成感知。最近的方法学会了以物体为中心的表现方式,并捕捉了物体的可视化概念,例如形状、大小和位置。在本文件中,我们向前迈出一步,试图发现和代表质量和电荷等内在物理概念。我们引入了“超单体{物理}/超体/单体{c} 概念。我们引入了“超体/单体{i}环境概念 ” 。这个系统以不受监督的方式从物体和关系的角度对环境进行构思。这个系统在没有监督的情况下将物理概念推导到不同的抽象层面。强调PHYCINE的关键洞察力是两重的,常识与预测一起出现,不同抽象层次的物理概念应该以自下而有理性的方式推理。我们系统工作所推断的变量与相应物理概念的特性相符。我们还展示了包含已发现物理概念的物体的物理变量,有助于更好地进行思维。</s>

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月24日
Arxiv
12+阅读 · 2023年2月7日
Arxiv
12+阅读 · 2022年4月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员