In this paper, we study the implementation of a model predictive controller (MPC) for the task of object manipulation in a highly uncertain environment (e.g., picking objects from a semi-flexible array of densely packed bins). As a real-time perception-driven feedback controller, MPC is robust to the uncertainties in this environment. However, our experiment shows MPC cannot control a robot to complete a sequence of motions in a heavily occluded environment due to its myopic nature. It will benefit from adding a high-level policy that adaptively adjusts the optimization problem for MPC.
翻译:在本文中,我们研究了在高度不确定的环境中(例如从一个半灵活、密集包装的垃圾箱中选取物体阵列)进行物体操纵的任务的模型预测控制器(MPC)的实施情况。作为一个实时的感知反馈控制器,MPC对这个环境中的不确定因素非常活跃。然而,我们的实验显示,MPC无法控制机器人在一个高度隐蔽的环境中完成一系列运动,因为它的短视性质。 增加一项适应性调整MPC优化问题的高级别政策将是有益的。