In this paper, we study error bounds for {\em Bayesian quadrature} (BQ), with an emphasis on noisy settings, randomized algorithms, and average-case performance measures. We seek to approximate the integral of functions in a {\em Reproducing Kernel Hilbert Space} (RKHS), particularly focusing on the Mat\'ern-$\nu$ and squared exponential (SE) kernels, with samples from the function potentially being corrupted by Gaussian noise. We provide a two-step meta-algorithm that serves as a general tool for relating the average-case quadrature error with the $L^2$-function approximation error. When specialized to the Mat\'ern kernel, we recover an existing near-optimal error rate while avoiding the existing method of repeatedly sampling points. When specialized to other settings, we obtain new average-case results for settings including the SE kernel with noise and the Mat\'ern kernel with misspecification. Finally, we present algorithm-independent lower bounds that have greater generality and/or give distinct proofs compared to existing ones.
翻译:在本文中, 我们研究“ 巴伊西亚二次曲线” (BQ) 的错误界限, 重点是噪音设置、 随机算法和平均性能测量。 我们试图将功能的内涵大致地定位为 ~ 复制 Kernel Hilbert 空间 (RKHS) (RKHS), 特别侧重于 Mat\' ern- $\ nu$ 和 quand 指数( SE) 内核, 该功能的样本可能会被 Gaussian 噪音腐蚀。 我们提供了一个双步元体元体, 用作将平均量二次体差与 $L $2$ 功能近似错误联系起来的一般工具 。 当专门为 Mat\ ern 内核提供时, 我们恢复了现有的近乎最佳的误差率, 同时避免了现有的反复取样点方法。 当专门针对其他环境时, 我们获得新的平均情况结果, 包括带有噪音的 SE 内核和 Mat\' e 内核 错误的设置 。 最后, 我们展示了与现有范围相比具有更大一般性和/ 不同证据的 。