We discuss MET, a learning-based algorithm proposed for perceiving a patient's level of engagement during telehealth sessions. We leverage latent vectors corresponding to Affective and Cognitive features frequently used in psychology literature to understand a person's level of engagement in a semi-supervised GAN-based framework. We showcase the efficacy of this method from the perspective of mental health and more specifically how this can be leveraged for a better understanding of patient engagement during telemental health sessions. To further the development of similar technologies that can be useful for telehealth, we also plan to release a dataset MEDICA containing 1299 video clips, each 3 seconds long and show experiments on the same. Our framework reports a 40% improvement in RMSE (Root Mean Squared Error) over state-of-the-art methods for engagement estimation. In our real-world tests, we also observed positive correlations between the working alliance inventory scores reported by psychotherapists. This indicates the potential of the proposed model to present patient engagement estimations that aligns well with the engagement measures used by psychotherapists.


翻译:我们讨论MET, 这是一种基于学习的算法,目的是在远程保健会议期间了解患者的参与程度。我们利用心理学文献中常用的情感和认知特征的潜向矢量来理解一个人在半监督的GAN框架中的参与程度。我们从心理健康的角度展示了这一方法的功效,更具体地说,如何利用这一方法来更好地了解患者在远程保健会议期间的参与程度。为了进一步开发对远程保健有用的类似技术,我们还计划发布一个包含1299个视频剪辑的MEDICA数据集,每3秒一次,并展示同样的实验。我们的框架报告说,RMSE(Roootmoume Sqard错误)相对于最新的参与估计方法有40%的改进。在现实世界的测试中,我们还观察到了心理治疗师所报告的工作联盟清单分数之间的正相关关系。这说明拟议模型有可能提出与心理治疗师所使用的参与措施相一致的患者参与估计。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
19+阅读 · 2022年7月29日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员