Reconstructing a composition (union) of convex polytopes that perfectly fits the corresponding input point-cloud is a hard optimization problem with interesting applications in reverse engineering and rigid body dynamics simulations. We propose a pipeline that first extracts a set of planes, then partitions the input point-cloud into weakly convex clusters and finally generates a set of convex polytopes as the intersection of fitted planes for each partition. Finding the best-fitting convex polytopes is formulated as a combinatorial optimization problem over the set of fitted planes and is solved using an Evolutionary Algorithm. For convex clustering, we employ two different methods and detail their strengths and weaknesses in a thorough evaluation based on multiple input data-sets.
翻译:重新构建完全适合相应输入点的 convex 多元面的组成( 联合) 是一个硬优化问题, 其应用在反向工程和僵硬体动态模拟中非常有趣。 我们建议建立一个管道, 首先提取一组平面, 然后将输入点的圆块分割成微弱的 convex 圆形集群, 最后生成一组适合每个分区的平面交接的 convex 圆顶面。 找到最适合的 convex 多元面, 被设计成一套适合的平面的组合优化问题, 并且用一个演进性 Algorithm 来解决 。 对于 convex 组合, 我们使用两种不同的方法, 在基于多个输入数据集的彻底评估中, 详细说明其长处和短处 。