We propose and analyze a novel structure-preserving space-time variational discretization method for the Cahn-Hilliard-Navier-Stokes system with concentration dependent mobility and viscosity. Uniqueness and stability for the discrete problem is established in the presence of nonlinear model parameters by means of the relative energy estimates. Order optimal convergence rates with respect to space and time are proven for all variables using balanced approximation spaces and relaxed regularity conditions on the solution. Numerical tests are presented to demonstrate the reliability of the proposed scheme and to illustrate the theoretical findings.
翻译:我们为Cahn-Hilliard-Navier-Stokes系统提议并分析一种新的结构保持空间-时间差异化方法,该方法的集中取决于流动性和粘度;在非线性模型参数存在的情况下,通过相对能源估计,确定离散问题的独特性和稳定性;利用平衡近似空间和解决方案的宽松规律性条件,证明所有变量在空间和时间方面的最佳趋同率;进行数字测试,以证明拟议办法的可靠性,并说明理论结论。