Binary counting under continual observation is a well-studied fundamental problem in differential privacy. A natural extension is maintaining column sums, also known as histogram, over a stream of rows from $\{0,1\}^d$, and answering queries about those sums, e.g. the maximum column sum or the median, while satisfying differential privacy. Jain et al. (2021) showed that computing the maximum column sum under continual observation while satisfying event-level differential privacy requires an error either polynomial in the dimension $d$ or the stream length $T$. On the other hand, no $o(d\log^2 T)$ upper bound for $\epsilon$-differential privacy or $o(\sqrt{d}\log^{3/2} T)$ upper bound for $(\epsilon,\delta)$-differential privacy are known. In this work, we give new parameterized upper bounds for maintaining histogram, maximum column sum, quantiles of the column sums, and any set of at most $d$ low-sensitivity, monotone, real valued queries on the column sums. Our solutions achieve an error of approximately $O(d\log^2 c_{\max}+\log T)$ for $\epsilon$-differential privacy and approximately $O(\sqrt{d}\log^{3/2}c_{\max}+\log T)$ for $(\epsilon,\delta)$-differential privacy, where $c_{\max}$ is the maximum value that the queries we want to answer can assume on the given data set. Furthermore, we show that such an improvement is not possible for a slightly expanded notion of neighboring streams by giving a lower bound of $\Omega(d \log T)$. This explains why our improvement cannot be achieved with the existing mechanisms for differentially private histograms, as they remain differentially private even for this expanded notion of neighboring streams.


翻译:持续观察下的二进制计数在差异隐私中是一个深层次的根本问题。 自然扩展是维持列数总额, 也称为直方图, 由 $ 0. 0, 1\\\\ d$ 美元组成的列数流, 并回答关于这些金额的询问, 例如, 最大列和中值, 满足差异隐私 。 Jain 等人 (2021) 显示, 在持续观察下计算最大列和值, 而满足事件级别差异隐私则需要在维系其维度、 $ 美元 或流长 $ T。 另一方面, 没有美元( dlog_ 2 T) 的上值, 以 美元 表示 最大 美元, 以 美元 =% 美元 =% 美元 的右上位數值 。 以 美元 =% 的当前數值解算出一個數值, 我們的數列的數值解數值是數列的數據, 以目前數列的數據為數列的數據解數列。

0
下载
关闭预览

相关内容

【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
11+阅读 · 2020年12月2日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
VIP会员
相关VIP内容
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
相关资讯
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员