Binary counting under continual observation is a well-studied fundamental problem in differential privacy. A natural extension is maintaining column sums, also known as histogram, over a stream of rows from $\{0,1\}^d$, and answering queries about those sums, e.g. the maximum column sum or the median, while satisfying differential privacy. Jain et al. (2021) showed that computing the maximum column sum under continual observation while satisfying event-level differential privacy requires an error either polynomial in the dimension $d$ or the stream length $T$. On the other hand, no $o(d\log^2 T)$ upper bound for $\epsilon$-differential privacy or $o(\sqrt{d}\log^{3/2} T)$ upper bound for $(\epsilon,\delta)$-differential privacy are known. In this work, we give new parameterized upper bounds for maintaining histogram, maximum column sum, quantiles of the column sums, and any set of at most $d$ low-sensitivity, monotone, real valued queries on the column sums. Our solutions achieve an error of approximately $O(d\log^2 c_{\max}+\log T)$ for $\epsilon$-differential privacy and approximately $O(\sqrt{d}\log^{3/2}c_{\max}+\log T)$ for $(\epsilon,\delta)$-differential privacy, where $c_{\max}$ is the maximum value that the queries we want to answer can assume on the given data set. Furthermore, we show that such an improvement is not possible for a slightly expanded notion of neighboring streams by giving a lower bound of $\Omega(d \log T)$. This explains why our improvement cannot be achieved with the existing mechanisms for differentially private histograms, as they remain differentially private even for this expanded notion of neighboring streams.
翻译:持续观察下的二进制计数在差异隐私中是一个深层次的根本问题。 自然扩展是维持列数总额, 也称为直方图, 由 $ 0. 0, 1\\\\ d$ 美元组成的列数流, 并回答关于这些金额的询问, 例如, 最大列和中值, 满足差异隐私 。 Jain 等人 (2021) 显示, 在持续观察下计算最大列和值, 而满足事件级别差异隐私则需要在维系其维度、 $ 美元 或流长 $ T。 另一方面, 没有美元( dlog_ 2 T) 的上值, 以 美元 表示 最大 美元, 以 美元 =% 美元 =% 美元 的右上位數值 。 以 美元 =% 的当前數值解算出一個數值, 我們的數列的數值解數值是數列的數據, 以目前數列的數據為數列的數據解數列。