This paper revisits soundness and completeness of proof systems for proving that sets of states in infinite-state labeled transition systems satisfy formulas in the modal mu-calculus. Our results rely on novel results in lattice theory, which give constructive characterizations of both greatest and least fixpoints of monotonic functions over complete lattices. We show how these results may be used to reconstruct the sound and complete tableau method for this problem due to Bradfield and Stirling. We also show how the flexibility of our lattice-theoretic basis simplifies reasoning about tableau-based proof strategies for alternative classes of systems. In particular, we extend the modal mu-calculus with timed modalities, and prove that the resulting tableaux method is sound and complete for timed transition systems.
翻译:本文回顾了证明系统是否健全和完整的证明系统,以证明在无限国家标签的过渡系统中的几组状态满足了模式型模量计算法中的公式。 我们的结果依赖于新颖的拉特斯理论结果,它给整个拉特斯的单调函数的最大和最小固定点提供了建设性的描述。 我们展示了这些结果如何用于重建布拉德菲尔德和斯特林造成的这一问题的健全和完整的表单方法。 我们还展示了我们拉特斯理论基础的灵活性如何简化了基于表单的替代系统类别证据战略的推理。 特别是,我们用时间模式扩展了模型型和最小固定点,并证明由此产生的表案方法对于时间过渡系统来说是健全和完整的。