In this paper, we consider a structurally damped elastic equation under hinged boundary conditions. Fully-discrete numerical approximation schemes are generated for the null controllability of these parabolic-like PDEs. We mainly use finite element method (FEM) and finite difference method (FDM) approximations to show that the null controllers being approximated via FEM and FDM exhibit exactly the same asymptotics of the associated minimal energy function. For this, we appeal to the theory originally given by R. Triggiani [20] for construction of null controllers of ODE systems. These null controllers are also amenable to our numerical implementation in which we discuss the aspects of FEM and FDM numerical approximations and compare both methodologies. We justify our theoretical results with the numerical experiments given for both approximation schemes.
翻译:在本文中,我们考虑了在封闭的边界条件下结构障碍的弹性方程式。为了这些抛物线式PDE的完全可控制性,产生了完全分解的数字近似方案。我们主要使用有限元素法(FEM)和有限差异法(FDM)近似法来显示,通过FEM和FDM, 空控器的近似值与相关的最低能源功能完全相同。为此,我们呼吁使用R. Triggianii [2020] 原先为建造ODE系统无效控制器而提出的理论。这些无效控制器也适合我们的数字执行,我们讨论FEM和FDM的数字近似值,比较这两种方法。我们用两种近似方案所提供的数字实验来证明我们的理论结果是正确的。