We consider a Strang-type second order operator-splitting discretization for the Cahn-Hilliard equation. We introduce a new theoretical framework and prove uniform energy stability of the numerical solution and persistence of all higher Sobolev norms. This is the first strong stability result for second order operator-splitting methods for the Cahn-Hilliard equation. In particular we settle several long-standing open issues in the work of Cheng, Kurganov, Qu and Tang \cite{Tang15}.
翻译:我们考虑的是卡恩-希利亚德等式的二等分解操作器。 我们引入了新的理论框架,并证明数字解决方案和索博廖夫所有较高规范的能源稳定性是统一的,这是卡恩-希利亚德等式第二等分解操作器方法的第一个强有力的稳定结果。 特别是,我们解决了成、库尔加诺夫、郭和唐工作的一些长期未决的问题。