Anderson acceleration (AA) is a technique for accelerating the convergence of fixed-point iterations. In this paper, we apply AA to a sequence of functions and modify the norm in its internal optimization problem to the $\mathcal{H}^{-s}$ norm, for some positive integer $s$, to bias it towards low-frequency spectral content in the residual. We analyze the convergence of AA by quantifying its improvement over Picard iteration. We find that AA based on the $\mathcal{H}^{-2}$ norm is well-suited to solve fixed-point operators derived from second-order elliptic differential operators, including the Helmholtz equation.
翻译:安德森加速( AA) 是一种加速固定点迭代趋同的技术。 在本文中, 我们将 AA 应用于一系列功能, 修改内部优化问题的规范, 修改为美元正整数, 偏向剩余部分的低频光谱内容。 我们分析 AA 的趋同, 将其改进量化于 Picard 迭代。 我们发现, 以 $mathcal{ H ⁇ 2} 标准为基础的 AAA 完全适合解决来自第二等离子体差异操作员的固定点操作员, 包括 Helmholtz 公式 。