We calculate finite sample and asymptotic distributions for the largest censored and uncensored survival times, and some related statistics, from a sample of survival data generated according to an iid censoring model. These statistics are important for assessing whether there is sufficient followup in the sample to be confident of the presence of immune or cured individuals in the population. A key structural result obtained is that, conditional on the value of the largest uncensored survival time, and knowing the number of censored observations exceeding this time, the sample partitions into two independent subsamples, each subsample having the distribution of an iid sample of censored survival times, of reduced size, from truncated random variables. This result provides valuable insight into the construction of censored survival data, and facilitates the calculation of explicit finite sample formulae. We illustrate for distributions of statistics useful for testing for sufficient followup in a sample, and apply extreme value methods to derive asymptotic distributions for some of those.


翻译:我们从根据一种静态审查模式产生的生存数据样本中,计算出最大受检查和未受检查的生存时间的有限抽样和零星分布,以及一些相关统计数据。这些统计数据对于评估样本中是否有足够的后续行动来确信人口中存在免疫或治愈的个人至关重要。我们取得的一个主要结构性结果是,根据最大未检查的生存时间的价值,并了解超过这一时间的受审查观察次数,抽样分解成两个独立的子样本,每个子样本都有经审查的存活时间、体积缩小、随机变数的分类样本。这一结果对受审查的生存数据的构建提供了宝贵的洞察力,并为计算明确的有限抽样公式提供了便利。我们举例说明了可用于在样本中测试充分后续行动的统计的分布情况,并运用极值方法对其中一些人进行无污染的分布。

0
下载
关闭预览

相关内容

【Google-Marco Cuturi】最优传输,339页ppt,Optimal Transport
专知会员服务
47+阅读 · 2021年10月26日
专知会员服务
41+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【实用书】数据科学基础,484页pdf,Foundations of Data Science
专知会员服务
117+阅读 · 2020年5月28日
已删除
将门创投
4+阅读 · 2019年11月20日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
用神经网络训练一个文本分类器
Python开发者
3+阅读 · 2017年8月19日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
0+阅读 · 2021年10月29日
VIP会员
相关VIP内容
【Google-Marco Cuturi】最优传输,339页ppt,Optimal Transport
专知会员服务
47+阅读 · 2021年10月26日
专知会员服务
41+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【实用书】数据科学基础,484页pdf,Foundations of Data Science
专知会员服务
117+阅读 · 2020年5月28日
相关资讯
已删除
将门创投
4+阅读 · 2019年11月20日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
用神经网络训练一个文本分类器
Python开发者
3+阅读 · 2017年8月19日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员