《数据科学与机器学习概论》的创建目标是为寻求了解数据科学的初学者、数据爱好者和经验丰富的数据专业人士提供从头到尾对使用开源编程进行数据科学应用开发的深刻理解。这本书分为四个部分: 第一部分包含对这本书的介绍,第二部分涵盖了数据科学、软件开发和基于开源嵌入式硬件的领域; 第三部分包括算法,是数据科学应用的决策引擎; 最后一节汇集了前三节中共享的概念,并提供了几个数据科学应用程序示例。
^
By Pakize Erdogmus and Fatih Kayaalp
By Deanne Larson
数据科学和大数据项目的数量正在增长,当前的软件开发方法受到了挑战,以支持和促进这些项目的成功和频率。关于如何使用数据科学算法以及大数据的好处已经有了很多研究,但是关于可以利用哪些最佳实践来加速和有效地交付数据科学和大数据项目的研究却很少。大数据的数量、种类、速度和准确性等特点使这些项目复杂化。数据科学家可利用的开源技术的激增也会使情况变得复杂。随着数据科学和大数据项目的增加,组织正在努力成功交付。本文讨论了数据科学和大数据项目过程,过程中的差距,最佳实践,以及这些最佳实践如何在Python中应用,Python是一种常见的数据科学开源编程语言。
正如人们所期望的那样,技术书籍的大部分时间都集中在技术方面。然而,这造成了一种错觉,即技术在某种程度上是没有偏见的,总是中性的,因此适合每个人。后来,当产品已经存在时,现实会证明我们不是这样的。包含和表示在设计和建模阶段是至关重要的。在本章中,我们将从架构的角度分析,哪些非功能性需求是最敏感的,以及如何开始讨论它们以最大限度地提高我们的软件产品成功的可能性。
Embedded Systems Based on Open Source Platforms By Zlatko Bundalo and Dusanka Bundalo
The K-Means Algorithm Evolution By Joaquín Pérez-Ortega, Nelva Nely Almanza-Ortega, Andrea Vega-Villalobos, Rodolfo Pazos-Rangel, Crispín Zavala-Díaz and Alicia Martínez-Rebollar
“Set of Strings” Framework for Big Data Modeling By Igor Sheremet
Investigation of Fuzzy Inductive Modeling Method in Forecasting Problems By Yu. Zaychenko and Helen Zaychenko
Segmenting Images Using Hybridization of K-Means and Fuzzy C-Means Algorithms By Raja Kishor Duggirala
The Software to the Soft Target Assessment By Lucia Mrazkova Duricova, Martin Hromada and Jan Mrazek
The Methodological Standard to the Assessment of the Traffic Simulation in Real Time By Jan Mrazek, Martin Hromada and Lucia Duricova Mrazkova
Augmented Post Systems: Syntax, Semantics, and Applications By Igor Sheremet
Serialization in Object-Oriented Programming Languages By Konrad Grochowski, Michał Breiter and Robert Nowak
本章描述了将对象状态转换为一种格式的过程,这种格式可以在当前使用的面向对象编程语言中传输或存储。这个过程称为序列化(封送处理);相反的称为反序列化(反编组)进程。它是一种低级技术,应该考虑一些技术问题,如内存表示的大小、数字表示、对象引用、递归对象连接等。在本章中,我们将讨论这些问题并给出解决办法。我们还简要回顾了当前使用的工具,并指出满足所有需求是不可能的。最后,我们提供了一个新的支持向前兼容性的c++库。