The comprehensibility and reliability of data download packages (DDPs) provided under the General Data Protection Regulation's (GDPR) right of access are vital for both individuals and researchers. These DDPs enable users to understand and control their personal data, yet issues like complexity and incomplete information often limit their utility. Also, despite their growing use in research to study emerging online phenomena, little attention has been given to systematically assessing the reliability and comprehensibility of DDPs. To bridge this research gap, in this work, we perform a comparative analysis to assess the comprehensibility and reliability of DDPs provided by three major social media platforms, namely, TikTok, Instagram, and YouTube. By recruiting 400 participants across four countries, we assess the comprehensibility of DDPs across various requirements, including conciseness, transparency, intelligibility, and clear and plain language. Also, by leveraging automated bots and user-donated DDPs, we evaluate the reliability of DDPs across the three platforms. Among other things, we find notable differences across the three platforms in the data categories included in DDPs, inconsistencies in adherence to the GDPR requirements, and gaps in the reliability of the DDPs across platforms. Finally, using large language models, we demonstrate the feasibility of easily providing more comprehensible DDPs.
翻译:暂无翻译